Concentration Formula Sheet:

Mass Percent:

$$mass \% = \frac{mass \ of \ solute}{mass \ of \ solution} \ x \ 100\%$$

Volume Percent:

Volume % =
$$\frac{Volume\ of\ solute}{Volume\ of\ solution} \ x\ 100\%$$

Solutions:

$$Solute(NaCl) + Solvent(H2O) = Solution$$

Dilution:

$$M_1V_1=M_2V_2$$

Mole Fraction:

$$X_A = \frac{n_A}{n_T} \qquad n_T = n_A + n_B + n_C + \dots$$

Density:

$$d = \frac{mass}{Volume} \qquad \qquad d = \frac{m}{V}$$

Molarity:

$$M = \frac{moles\ of\ solute}{Liters\ of\ Solution} \qquad M = \frac{n}{V}$$

$$M = \frac{n}{V}$$

molality:

$$molality = \frac{moles\ of\ solute}{Kg\ of\ Solvent}$$

Normality:

$$\label{eq:normalization} \textbf{\textit{N}} = \frac{\textit{\# of gram equivalent weight of solute}}{\textit{Liters of Solution}}$$

Normality:

$$N = M \times n$$

of Gram Equivalent Weight:

$$\# of gram EW = \frac{mass of solute}{Equivalent Weight}$$

Normality - Simplified Formula:

$$N = \frac{m * n}{V * M_w}$$

 $m \rightarrow mass(g)$

 $V \rightarrow Volume$ (Liters of Solution)

 $M_w \rightarrow Molecular Weight or Molar mass$

 $n \rightarrow number\ of\ H^+\ or\ OH^-\ ions\ per\ formula\ unit$

Equivalent Weight:

$$EW = \frac{Molar\ mass}{n}$$

Acid Base Neutralization Reactions:

$$N_1 V_1 = N_2 V_2$$

Parts Per Million: (ppm)

$$ppm(m/m) = \frac{mass\ of\ solute}{mass\ of\ solution} \ x\ 10^6$$

$$ppm(V/V) = \frac{Volume\ of\ solute}{Volume\ of\ Solution} \times 10^6$$

$$ppm(m/V) = \frac{mass\ of\ solute\ (g)}{Volume\ of\ Solution\ (mL)}\ x\ 10^6$$

$$ppm(m/V) = \frac{mass\ of\ solute\ (mg)}{Volume\ of\ Solution\ (L)}$$

Note: 1 ppm = 1 mg/L 1 ppb = 1 ug/L

Parts Per Billion: (ppb)

$$ppb (m/m) = \frac{mass \ of \ solute}{mass \ of \ solution} \ x \ 10^9$$

$$ppb(V/V) = \frac{Volume\ of\ solute}{Volume\ of\ Solution} \times 10^9$$

$$ppb(m/V) = \frac{mass\ of\ solute\ (\mathbf{g})}{Volume\ of\ Solution\ (\mathbf{mL})}\ x\ 10^9$$

$$ppb(m/V) = \frac{mass\ of\ solute\ (ug)}{Volume\ of\ Solution\ (L)}$$

Note: 1 ppm = 1000 ppb

Concentration Vs Solubility:

Unsaturated Solution: C < S (Dissolution) Saturated Solution: C = S (Equilibrium) Supersaturated Solution: C > S (Precipitation)

Henry's Law:

$$\frac{P_2}{P_1} = \frac{S_2}{S_1}$$
 $S = kP$ $\frac{S_1}{P_1} = \frac{S_2}{P_2}$

Note: $k \to Solubility gas constant <math>\left(\frac{mol}{L*atm}\right)$

Enthalpy of Solution:

$$\Delta H_{Solution} = \Delta H_{Hydration} - \Delta H_{Lattice\ Energy}$$

$$\Delta \mathbf{H}^{o}_{solution} = \sum_{f} n \, H^{o}_{f}(products) - \sum_{f} n \, H^{o}_{f}(reactants)$$