Buffer Solutions Worksheet

Organic Chemistry Tutor

- 1. What is the pH of a solution consisting of 0.75 M $HC_2H_3O_2$ and 0.50 M $NaC_2H_3O_2$? The K_a of $HC_2H_3O_2$ is 1.8 x 10^{-5} .
- 3. Calculate the pH of a solution containing 15g of HF and 21g of NaF in 750 mL of solution. (The K_a of HF is 7.2×10^{-4})

- 2. What is the pH of a solution containing 0.15 mol of NH₄Cl and 1.5 mol of NH₃? (The K_b of NH₃ is 1.8 x 10^{-5})
- 4. What is the pK_a of an unknown weak acid if the pH of the solution was measured to be 5.62 when [HA] = 0.450 M and $[A^{-}] = 0.850 \text{ M}$?

- 5. The pK_a of HCN is 9.21. (a) What is the ratio of $[CN^-]$ to [HCN] if the pH of the solution is 9.85? (b) If [HCN] = 0.25 M at a pH of 9.85, what will be the concentration of $[CN^-]$?
- 7. The K_a of a certain weak acid (HX) is 1 x 10⁻⁹. (a) If [X⁻] is ten times [HX], what is the pH of the solution? (b) What is the concentration of H_3O^+ in this solution?

- 6. Calculate the mass of NaF in grams that must be dissolved in a 0.25 M HF solution to form a 300 mL buffer solution with a pH of 3.5. (K_a for HF is 7.2 x 10^{-4})
- 8. The K_a values for certain acids are listed below: Which of the following will be ideal to create a buffer solution centered at a pH of 7.1?

 $\begin{array}{lll} \text{HF:} & \text{K}_a = 7.2 \text{ x } 10^{-4} \\ \text{HC}_2 \text{H}_3 \text{O}_2 \text{:} & \text{K}_a = 1.8 \text{ x } 10^{-5} \\ \text{HOCI:} & \text{K}_a = 3.5 \text{ x } 10^{-8} \\ \text{H}_2 \text{PO}_4^{\text{--}} \text{:} & \text{K}_a = 6.2 \text{ x } 10^{-8} \\ \text{NH}_4^{\text{+-}} \text{:} & \text{K}_a = 5.6 \text{ x } 10^{-10} \end{array}$

- A. HF / NaF
- B. HC₂H₃O₂ / NaC₂H₃O₂
- C. HOCI / KOCI
- D. NaH₂PO₄ / Na₂HPO₄
- E. NH₄Cl / NH₃

- 9. Which of the following statements is false?
- A. The pH of a buffer solution is equal to the pK_a of the weak acid when $[HA] = [A^-]$
- B. Buffer solutions are resistant to pH changes when a strong acid or a strong base is added to it.
- C. A buffer solution is composed of a weak acid and its conjugate weak base.
- D. The pH of a buffer solution is greater than the pK_a of HA when $[A^-] > [HA]$.
- E. The pH of a buffer solution will differ from the pK_a of HA by 2 units when $[A^-]$ is ten times greater than [HA].

- 11. Which of the following combinations represents a buffer solution?
- A. HCl and NaCl
- B. HF and NaOH
- C. HCl and NaOH
- D. NH₃ and HF
- E. HCN and NaCN

- 10. A buffer solution is prepared from mixing 80 mL of a 0.40 M NH $_3$ solution with 120 mL of a 0.30 M NH $_4$ Cl solution. The K $_a$ for NH $_4$ + is 5.56 x 10 $^{-10}$. (a) What is the pH of the solution? (b) Calculate [H $_3$ O+].
- 12. Which of the following combinations will produce a buffer solution?
- A. 100 mL of 0.40 M HCl + 50 mL of 0.50 M NaCl
- B. 80 mL of 0.50 M $NH_3 + 60$ mL of 0.60 M NaOH
- C. 70 mL of 0.60 M HCl + 50 mL of 0.50 M NH_3
- D. 80 mL of 0.50 M NaOH + 70 mL of 0.80 M HF
- E. 60 mL of 0.60 M HCl + 50 mL of 0.80 M HCN

- 13. 50 mL of a 0.30 M NaOH solution is added to 100 mL of a 0.45 M HCN solution. What is the pH of the resulting mixture? (The K_a for HCN is 6.2 x 10^{-10})
- 15. Calculate the change in pH that occurs when 100 mL of a 0.05 M HCl solution is added to (a) 100 mL of water. (b) 100 mL of a buffer solution containing 0.10 M NH $_3$ and 0.10 M NH $_4$ Cl. (c) 100 mL of a buffer solution containing 1.0 M NH $_3$ and 1.0 M NH $_4$ Cl. (d) Describe the function of a buffer solution based on the answers found in parts (a) and (b). (e) Describe the concept of buffering capacity with respect to pH changes calculated in parts (b) and (c).

- 14. Which of the following solutions has the greatest buffering capacity? (Assume each solution have the same volume)
- 16. How many mL of a 0.80 M NaOH solution must be added to 300 mL of a 0.30 M NH_4Cl solution to make a buffer with a pH of 10.0? (The pK_a of NH_4^+ is 9.25527)

- A. 0.10 M HF / 0.10 M NaF
- B. 0.50 M HF / 0.50 M NaF
- C. 3.0 M HF / 3.0 M NaF
- D. 1.0 M HF / 1.0 M NaF

Answers:

- 1. pH = 4.57
- 2. pH = 10.26
- 3. pH = 2.97
- 4. $pK_a = 5.34$
- 5a. $[CN^{-}]/[HCN] = 4.365$
- 5b. $[CN^{-}] = 1.09 M$
- 6. 7.17g of NaF
- 7a. pH = 10
- 7b. $[H_3O^+] = 1 \times 10^{-10} M$
- 8. D
- 9. E
- 10a. pH = 9.20
- 10b. $[H_3O^+] = 6.3 \times 10^{-10} M$
- 11. E
- 12. D
- 13. pH = 8.91
- 14. C
- 15a. $\Delta pH = -5.40$
- 15b. $\Delta pH = -0.477$
- 15c. $\Delta pH = -0.0435$
- 15d. A buffer solution is designed to reduce changes in the pH of a solution.
- 15e. A buffer with a larger buffer capacity will be more resistant to pH changes compared to a buffer with a smaller buffer capacity.
- 16. 95.3 mL