
AVX 512

;CREEL?

Introduction

In this video and accompanying text, we will explore 3 different ways to program AVX 512.
Then we will look at the low level mechanisms that AVX512 offers. The three methods are:

1. Agner Fog’s Vector Class Library
2. C++ Compiler Intrinsics
3. Native Assembly Language

I will use Visual Studio 2019 Community. This software is available from the Microsoft
Website:
https://visualstudio.microsoft.com/vs/community/

Note: It is possible to use other software, for example GNU C++ compiler and the GNU
Assembler and NASM with Clang C++. The steps for adding files, linking and compiling
are slightly different for other tool chains, as well as the Assembly syntax.

AVX512 is not available on many modern CPU’s. The correct method for testing if AVX512 is
available on your hardware is to call the CPUID instruction. For this text, I will assume we
know that the hardware is AVX512 capable.

https://visualstudio.microsoft.com/vs/community/

0. Beginning a new C++ Application

We will begin by creating a new C++ project.

I will use an “empty
project” for this
demonstration, but you
can also add AVX512
capabilities to existing
projects using similar
steps to those
described.

Give your project an
appropriate name, and click
the “Create” button.

We should ensure our project is set to build a 64 bit executable.

Click the “Configurations
Manager”, and select x64.

We are about to
change the project
properties, but, we
have to add a C++
source file to our
project or the C++
compiler options will
not be visible in the
project properties!

Right click on the
name of your project
in the “Solution
Explorer”, select “Add”
and “New Item”.

Alternatively, you can add a new item from the file menu “Project Add New Item” or use→
short cut Ctrl+Shift+A.

On the “Add New Item” form,
select “Visual C++” from the
left panel, and “C++ File (.cpp)”
from the centre panel. Then
type a name for your file,
“main.cpp”.

Click “Add” to add the file and
close the page.

At this point, the next steps depend on whether we are coding VCL, Compiler Intrinsics, or
if we are programming native Assembly. You can skip to the appropriate section or follow
along all three methods for coding AVX512 and create a project where you can mix and
match methods!

1. Agner Fog’s VCL

Download the latest version of Agner Fog’s VCL from the github:
https://github.com/vectorclass/version2

Extract the library somewhere on your computer. The library comes as a zipped archive
of headers and source files. I have extracted the library to a folder on my Desktop called
“../Prog/AgnerFogVCL”.

Note: As an alternative to copying the VCL to a folder and reusing it, you can also simply
copy and paste the extracted VCL files into your project’s source folder. For more details
on how to use the VCL, see the manual, available at:
https://www.agner.org/optimize/vcl_manual.pdf

Once you have exacted the library
somewhere on your computer,
return to your C++ project. In order
to use the VCL, we need to change
some of the project properties.
Click the “Project Properties”
button in the file menu:

The changes we will make are
probably useful in both Debug as
well as Release mode, so we can
select “All Configurations” in the
Configuration drop down box.

https://www.agner.org/optimize/vcl_manual.pdf
https://github.com/vectorclass/version2

Next, select the latest
version of C++ in the
language standard.

The VCL employs
extensive use of
modern C++.

Next, we need to specify the VCL folder as an Include Directory, so Visual Studio knows
where to find the headers.

In the “VC++ Directories”
section, click the small
drop down arrow for
“Include Directories”, and
then “Edit”.

In the “Include Directories” form, click
the small new folder button, and then
the “…”, to add a new folder to the
search paths.

Find the folder
where you
extracted the VCL
zip file to, and then
click “Select
Folder”.

Click “Ok” on the
“Include
Directories” form
to add the
directory and
close the form.

Now that Visual Studio
knows where to find the
VCL headers, we have to
specify the Enhanced
Instruction Set for the
compiler.

Set the Instruction set to
AVX512 in the C/C++
compiler options.

VCL will automatically
generate low level code
based on the specified
instruction set.

We have finished setting up our project to use the VCL. You can add the following code to
your main.cpp file to test the library:

#include <iostream>
#include <vectorclass.h>

int main()
{

Vec8d a = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
Vec8d b = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
Vec8d c = a + b;

for (int i = 0; i < 8; i++)
{

std::cout << i << "." << c[i] << std::endl;
}

return 0;
}

Vec8d is a VCL vector, storing 8 double precision floating point values. In this test code,
we store the numbers 1.0 to 8.0 in two vectors called a and b, and then we use the +, to
add the corresponding values and store the results in the c vector.

One of the most important features of VCL is the convenience of the code. We can use
standard operators for arithmetic, such as addition, subtraction, multiplication and
division (although integer division is more complicated, since there are no SIMD integer
division instructions). VCL code is translated into compiler intrinsics, so very little speed
is lost. In addition to basic arithmetic, there are a large number of other interesting and
powerful functions in the VCL. For more detailed information on the library, please see
the manual.

The addition here will be carried out using an AVX512 instruction, “VADDPD zmm, zmm,
zmm/mem256”.

2. Compiler Intrinsics

To use the compiler intrinsics, we need to include the <intrin.h> header.

#include <iostream>
#include <intrin.h>

int main()
{

__m512d a = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
__m512d b = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

__m512d c = _mm512_add_pd(a, b);

for (int i = 0; i < 8; i++)
std::cout << i << "." << ((double*)&c)[i] << std::endl;

return 0;
}

The compiler intrinsics are specific to particular instructions. The intrinsic
_mm512_add_pd corresponds to the AVX512 instruction “VADDPD zmm, zmm,
zmm/mem512”. There are many instruction intrinsics available. To see a list, you can type
“_mm512_” and Visual Studio’s intellisense will provide a context menu showing available
intrinsics.

There are several different data types for vectors available, the __m512d corresponds to
an ANV512 vector containing 8 double precision floating point values.

3. Native Assembly Language

The final way we will explore for implementing AVX 512 is native x86/64 Assembly
language.

To include an Assembly language source file in your project, we have to specify the MASM
build customisation.

Right click on your project
name in the solution explorer.
Select the “Build
Dependencies” option from
the context menu, and click
“Build Customizations…”

In the “Build Customization”
form, you will see a list of all
the build customisations you
have installed. We want to use
MASM to assemble “.asm” files,
so check the box beside
“masm(.targets, .props)”. Then
click “ok”.

Next, we have to add an assembly source file to our project. Press Ctrl+Shift+A, or right
your project in the solution explorer and select “Add new item” to add a new item to your
project.

In the Add New Item box, select
“Visual C++” from the left panel,
then “C++ File (.cpp)”. Type a
name for your new file.
Remember that your file name
should end with the “.asm”
extension, such that Visual
Studio will know to use the
MASM build customisation. I have
called my file “avx512.asm”. Click
“Add” to create and add the file to
your project.

Type or copy the following code into the “.asm” file:

.code
; void ASM_ADDPD(*rcx=C, *rdx=A, *r8=B)
; Adds vectors A and B, each containing 8 double
; precision floats, and stores the 8 results in
; the C vector.
ASM_ADDPD proc

; Move A into the ZMM0 register
vmovupd zmm0, zmmword ptr [rdx]

; Add B to ZMM0, store the 8 sums in ZMM0
vaddpd zmm0, zmm0, zmmword ptr [r8]

; Write the sums to C
vmovupd zmmword ptr [rcx], zmm0
ret

ASM_ADDPD endp
end

This code defines a function which adds two vectors of 8 doubles each, and stores the
result. There are two different AVX512 instruction in this code:

VMOVUPD: Move unaligned packed doubles. This instruction is used to move data from
RAM into the registers. It is also used to move data from the registers back to RAM. There
is also an instruction to move aligned doubles, MOVAPD, if you know that your data is
aligned and/or you are moving data from register to register.

VADDPD: Add packed doubles. This instruction adds all 8 pairs of doubles from the
second and third operands, and it stores the 8 results in the first operand.

Note: The 256 bit AVX versions of these instructions have the same mnemonics:
VMOVUPD and VADDPD. In the code above, we use the ZMM registers, rather than the
YMM registers. This will ensure we are calling the 512 bit versions of the instruction.

To call this function from a C++ code file, we must declare it first. The following code is an
example of how we might call this function from the main.cpp file:

#include <iostream>

// Declare the ASM function
extern "C" void ASM_ADDPD(double* C, double* A, double* B);

int main()
{

double A[8] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double B[8] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double C[8];

ASM_ADDPD(C, A, B); // Call the ASM function

for (int i = 0; i < 8; i++)
{

std::cout << i << "." << C[i] << std::endl;
}

return 0;
}

Notice the line “extern “C””. This line is the declaration for the external Assembly function.
We have to include a declaration like this for every function we want to be available to the
C++. The output of this program is as follows:

0.2
1.4
2.6
3.8
4.10
5.12
6.14
7.16

We can see from the 2, 4, 6, 8, etc. That all 8 pairs of double from the A and B arrays were
added together.

AVX 512 Mechanisms

We have briefly looked at how we can execute AVX 512 code in three different ways. Let
us explore some of the other important mechanisms which AVX 512 offers.

32 512 Bit Registers

AVX512 contains 512 bit registers. We can view the contents of these registers by
examining the Registers Window while the program stops at a break point. You can find
the Registers window in the file menu: Debug Windows Registers.→ →

The registers window is only
available when the program
is stopped at a breakpoint.

Once open, the registers
window will not show the
AVX512 registers by default. To
show them, right-click
somewhere in the widow to
open the context menu, and
select AVX512.

You will most likely find that the AVX 512 registers do not display in a particularly
convenient way, being as they extremely wide. But if you resize the window, you should
see something like the image pictured below.

Notice that there are 32 of the registers named ZMM0 to ZMM31. AVX512 increases the
available register count from 16 to 32. Also, you can see the K mask registers here, listed
along the bottom of the window. We will see K masks in action just a moment!

We can also set watches on the registers and the vectors from the Assembly code, VCL
or the compiler intrinsics. The watch window on a register displays all the possible data
interpretations, so be careful and make sure you are looking at the correct data types
when you debug your AVX 512 code. Here is an image of the Watch Window on ZMM0 after
the VADDPD instruction was executed from the Assembly code in the previous section:

In the code, we were working
with 64 bit doubles. So I have
expanded the m512_f64 branch.
The data in a register has no
particular type – Assembly is
not a type safe language. But
you can see the results from
the additions here: 2.0, 4.0, 6.0,
etc.

K Masks

There are 8 masking registers, called K0 to K7. Each is 64 bits wide. When a K mask is
used with an instruction, the results are written to the destination register only when
there is a 1 in the corresponding position in the K mask. All elements which correspond to
0’s in the K mask will remain unchanged!

For example, the code from the Assembly example is listed below, but I have included the
use of a K mask. Here, we use a mask of 55h. Which, in binary is 010101012. This means
every second result will be stored, because there 1’s in every second position of he mask.
But where there are 0’s, the results will not change:

.code
; void ASM_ADDPD(*rcx=C, *rdx=A, *r8=B)
; Adds vectors A and B, each containing 8 double
; precision floats, and stores the 8 results in
; the C vector.
ASM_ADDPD proc

; Move A into the ZMM0 register
vmovupd zmm0, zmmword ptr [rdx]

; Move some data into EAX
mov eax, 55h

; Copy that data into K1
kmovd k1, eax

; Add using K mask!
vaddpd zmm0{k1}, zmm0, zmmword ptr [r8]

; Write the sums to C
vmovupd zmmword ptr [rcx], zmm0
ret

ASM_ADDPD endp
end

Note: K0 is reserved. It is used implicitly when a mask is not needed (Intel Reference
Manuals). It is set to 0xffffffffffffffff, and this should not be changed. If you do try to
change the value of K0, the Visual Studio watch window reports the updated K0 value, but
the mask is still applied as 0xffffffffffffffff regardless.

Notice the instructions to move data into a K mask. The MOV instruction cannot directly
move data into a K mask. So, I have used two instructions:

MOV EAX, 55h ; Move data into EAX
KMOVD K1, EAX ; Move data into K1

Once we have the bits in our K1 mask register, we can selectively write the outputs by
supplying the {k1} decoration:

VADDPD zmm0{k1}, zmm0, zmmword ptr [r8]

If we execute the instruction with the same data as before, the result will be:

2.0, 2.0, 6.0, 4.0, 10.0, 6.0, 14.0, 8.0

The vectors each contained 1, 2, 3, 4, 5, 6, 7, 8. Because of the mask, elements with an
even index have been doubled, but elements with odd indices remain unchanged.

Zero Mask

In addition to a K mask, we can include the Zero decoration, {z}. If used, we place this
decoration after the K mask in the instruction mnemonic:

VADDPD zmm0{k1}{z}, zmm0, zmmword ptr [r8]

When we use a Zero mask, it means that the results which correspond to Zero in the K
mask should be Zeroed. That is, instead of writing the results to positions where there is 1
in the K mask, and leaving the others unchanged; using a Zero mask will write the results
where there is a 1 in the K mask but it will Zero everything else.

Using a Zero mask on the vectors from before will result in the following:

2.0, 0.0, 6.0, 0.0, 10.0, 0.0, 14.0, 0.0

We still get the sums, the same as before, only the remaining elements have been Zeroed.

We are using K masks and doubles in these examples, but the K masks are 64 bits wide –
which corresponds to the number of bytes in an AVX512 register. We can perform
extremely fast branchless conditions using K masks with up to 64 byte operations at a
time. The K mask instructions do not appear to take any extra time to execute.

Note: Because of the masking abilities of AVX512, the blending instructions have changed
considerably since the AVX 1 and 2. And, many instructions which did not previously
require us to specify a data type, must now specify one. For instance, the AVX instruction
VPAND performs a Boolean AND between 256 bit registers – and the data type in the
registers is irrelevant. But in AVX512, we have to add the data size, just in case a K mask
is used: VPANDD.

Automatic Broadcasting

AVX512 features a new broadcasting decoration. To broadcast is to copy the same value to
all elements of a SIMD vector. If we wish to add 5.0 to every value of a vector of doubles,
for example, we might fill a vector with 5.0 by using a broadcast instruction, and then
perform the addition.

In AVX512, we can skip the explicit broadcast instruction, and perform the broadcast and
the add in a single instruction!

Note: There is currently no Intrinsic support for the broadcasting feature, so if you want
to use this feature, Assembly is the only option.

.data
scalar_double real8 5.0

.code
ASM_ADD5 proc

; Move A into the ZMM0 register
vmovupd zmm0, zmmword ptr [rdx]

; Store address of scalar_double in rax
lea rax, scalar_double

; Broadcast the 5.0 from the data segment and add
vaddpd zmm0, zmm0, real8 bcst [rax]

; Write the sums to C
vmovupd zmmword ptr [rcx], zmm0
ret

ASM_ADD5 endp
end

In the code above, we first define a double, or real8 in the data segment, called
scalar_double. This will allocate 5.0 as a 64 bit double, it is not a vector. This is the single
value 5.0 as an 8 byte double.

Then in the code we have a function called ASM_ADD5. The function begins by reading 8
double precision floating point values passed as the first parameter (*RDX). The values
are stored in ZMM0.

Then, we read the address of the scalar_double variable into the RAX register, using the
LEA instruction. LEA is used to create pointers to data. RAX points to scalar_double.

Next, we perform the addition using the VADDPD instruction. But notice the “bcst”:

VADDPD zmm0, zmm0, real8 bcst [rax]

This means that scalar_double (which RAX points to), will be broadcast to a temporary
vector:

temporary = [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]

And then this temporary vector will be used as the third parameter to the sum
instruction.

Note: The MASM syntax for the broadcast is not standard! The Intel syntax (also used by
NASM) for this operation would be “VADDPD zmm0, zmm0, [rdx] {1to8}”. In the Intel
syntax, there is also decorations {1to4} and {1to16}, depending on the number of elements
being broadcast.

These broadcasts are only available for the data elements of size 32 and 64 bits. They are
not available for every instruction.

Rounding Control
In many floating point instructions, implicit rounding is performed. This is because
floating point is not able to accurately represent most values.

In older instruction sets, SSE and AVX, when a result is rounded, the rounding mode is
specified in the MXCSR register. In AVX512, we can specify the rounding mode in the
instructions themselves. This means we can change rounding modes on an instruction by
instruction basis!

The rounding mode decorations in MASM are:

{rn-sae} Round to nearest. Numbers are rounded up or down toward the nearest
whole number.

{rd-sae} Round down. Numbers are rounded down, towards -Infinity, regardless of
how near they are to any whole number.

{ru-sae} Round up. Numbers are rounded up, towards +Infinity, regardless of how
near they are to any whole number.

{rz-sae} Round to ward Zero. Positive number are rounded down, and negative
numbers are rounded up.

Note: If we do not specify a rounding mode, the rounding mode specified in the MXCSR
register will be used.

To use the rounding modes, specify the appropriate decoration at the end of the
instruction. The following code shows the VCVTPS2DQ instruction:

.data
some_singles real4 1.5, 2.7, -2.7, 1.9, 0.5, 7.3, -7.3, 12.3, -5.9, 1.3, 1.6, -6.1, 5.4,
1.5, 4.1, -4.2

.code
ASM_ADDPD proc

; Move some_singles into
vmovupd zmm0, zmmword ptr [some_singles]

vcvtps2dq zmm1, zmm0{rn-sae}
ret

ASM_ADDPD endp
end

In the code above, we use the VCVTPS2DQ instruction to cast the single precision floating
point array in the data segment to 32 bit integers. We use the {rn-sae} decoration, to
cause the rounding mode to be “to nearest”. This will cause the elements to be cast as
follows:

Name Value Type

◢ m512_i32 {2, 3, -3, 2, 0, 7, -7, 12, -6, 1, 2, -6, 5, 2, 4, -
4} int[16]

[0] 2 int
[1] 3 int
[2] -3 int
[3] 2 int
[4] 0 int
[5] 7 int
[6] -7 int
[7] 12 int
[8] -6 int
[9] 1 int
[10] 2 int
[11] -6 int
[12] 5 int
[13] 2 int
[14] 4 int
[15] -4 int

As you can see from the output, the rounding has been applied. The 2.7 was rounded up to
3, and the -2.7 was rounded down to -3. This is different from the normal C++ casting,
which would truncate, or round towards Zero, and return 2 and -2 respectively.

Note: The exact details of how floating point results are rounded is specified in the
IEEE754 floating point standard. Please see Wikipedia for more information:
https://en.wikipedia.org/wiki/IEEE_754

Note: The NASM sytax requires a comma between the final parameter and the rounding
mode: VCVTPS2DQ zmm0, zmm1, {rz-sae}

Compressed Displacement

The new compressed displacement addressing mode is mostly handled by compilers and
assemblers automatically. It is a space saving mechanism for use within unrolled vector
loops. It allows any displacements which are evenly divisible by the operand size to be
stored in the machine code in a compressed format. To best illustrate the mechanism, we
can look at the disassembly of two instructions, one that does not use AVX512
compressed displacement, and another that does:

; This instructions will not use Compressed Displacement!
vaddps zmm0, zmm0, zmmword ptr [rcx+123]

; This instruction will use Compressed Displacement!
vaddps zmm0, zmm0, zmmword ptr [rcx+64*2]

The first instruction uses the displacement 123, which is not a multiple of the operand
size. The operands are ZMM registers, their size is 64 bytes.

https://en.wikipedia.org/wiki/IEEE_754

In the second instruction, the offset is 64*2, or 128, which is a multiple of the operand
size. The Assembler will encode this second instruction to use the compressed
displacement. We can read the machine code of these two instructions and compare to
see what compressed displacement is:

62 F1 7C 48 58 81 7B 00 00 00 vaddps zmm0,zmm0,zmmword ptr [rcx+7Bh]
62 F1 7C 48 58 41 02 vaddps zmm0,zmm0,zmmword ptr [rcx+80h]

The bytes on the left are the machine code for the two instructions. Notice that the first
instruction translates to longer machine code. The displacement, 123, is encoded as the
32 bit value 0x0000007B, in hexadecimal.

But, in the second instruction, compressed displacement is used. And the displacement
0x80, or 2x64 is encoded with a “2”. In other words, compressed displacement expresses
the displacement as a byte, representing a multiple of the operand size.

Compressed displacement is designed to save space in unrolled SIMD code. A common
pattern in such code is as follows:

; Unrolled vector addition example
vaddps zmm0, zmm0, zmmword ptr [rcx]
vaddps zmm1, zmm1, zmmword ptr [rcx+64*1]
vaddps zmm2, zmm2, zmmword ptr [rcx+64*2]
vaddps zmm3, zmm3, zmmword ptr [rcx+64*3]
vaddps zmm4, zmm4, zmmword ptr [rcx+64*4]
vaddps zmm5, zmm5, zmmword ptr [rcx+64*5]
vaddps zmm6, zmm6, zmmword ptr [rcx+64*6]
vaddps zmm7, zmm7, zmmword ptr [rcx+64*7]

Here we see a heavily unrolled vector loop. There are 8 accumulators being used, ZMM0
through to ZMM7. Notice the access pattern in the final parameter. The accumulators
each sum different groups of 8 packed singles. Each displacement is a consecutive
multiple of 64.

The pattern is [rcx+op_size*n], where op_size is the operand size, and where n is the
multiple. Compressed displacement works with 32 and 16 byte operands too – i.e. AVX and
SSE vectors.

If we look at the machine code for the above instructions, we can see that compressed
displacement has saved quite a lot of space in the code:

62 F1 7C 48 58 01 vaddps zmm0,zmm0,zmmword ptr [rcx]
62 F1 74 48 58 49 01 vaddps zmm1,zmm1,zmmword ptr [rcx+40h]
62 F1 6C 48 58 51 02 vaddps zmm2,zmm2,zmmword ptr [rcx+80h]
62 F1 64 48 58 59 03 vaddps zmm3,zmm3,zmmword ptr [rcx+0C0h]
62 F1 5C 48 58 61 04 vaddps zmm4,zmm4,zmmword ptr [rcx+100h]
62 F1 54 48 58 69 05 vaddps zmm5,zmm5,zmmword ptr [rcx+140h]
62 F1 4C 48 58 71 06 vaddps zmm6,zmm6,zmmword ptr [rcx+180h]
62 F1 44 48 58 79 07 vaddps zmm7,zmm7,zmmword ptr [rcx+1C0h]

The first instruction has no displacement. But for each of the other instructions, we can
see the AVX512 compressed displacement bytes in the machine code on the left. The final
bytes of the instructions are the compressed displacement bytes, 01, 02, 03, etc.

If compressed displacement was not used, each of the instructions (excepting the first)
would have consumed 3 extra bytes in RAM – this is a total saving of 3x7, or 21 bytes.

Conclusion

There are many ways to employ AVX 512 in your own projects. We have looked at 3
different ways in this text: Agner fog’s VCL, Compiler Intrinsics, and Assembly Language.

AVX 512 is a gigantic instruction set. It is complicated, flexible and extremely powerful.
Not only does it contain larger vector registers, and more of them, but it also includes K
masks, Zero masking, compressed displacement, rounding control and automatic
broadcasting.

In this text and accompanying videos, we have explored the surface of the instruction set.
We have said almost nothing of the instructions themselves! AVX 512 adds a vast number
of new instructions. Many are just upgraded versions of AVX and SSE instructions, but
there are also a lot of brand new instructions. It would be impossible to cover the entire
instruction set in a single document or video series. But hopefully we can explore some
more in upcoming adventures.

Thank you for watching and reading :)

; CREEL?

References and further Reading:

Agner Fog’s VCL github: https://github.com/vectorclass/version2

VCL Manual: https://www.agner.org/optimize/vcl_manual.pdf

AVX512 Wikipedia Article: https://en.wikipedia.org/wiki/AVX-512

Intel Specifications and Programmer’s References:
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

IEEE 754 Wikipedia Article (featuring rounding modes):
https://en.wikipedia.org/wiki/IEEE_754

https://github.com/vectorclass/version2
https://www.agner.org/optimize/vcl_manual.pdf
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/AVX-512

	Introduction
	0. Beginning a new C++ Application

	1. Agner Fog’s VCL
	2. Compiler Intrinsics
	3. Native Assembly Language
	AVX 512 Mechanisms
	32 512 Bit Registers

	K Masks
	Zero Mask
	Automatic Broadcasting

	Rounding Control
	Compressed Displacement

	Conclusion
	References and further Reading:

